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Introduction and Contribution

Drug-Drug Interactions (DDI) often occur in cases
of simultaneous administration of multiple drugs,
which may result in adverse drug reactions that
cause 1njuries and huge medical costs. The correct
use of multiple drugs can minimize the medical
risks while maximizing the synergy benefits of
drugs.

Drugs DDI Events
Itraconazole 6) o Q (Q
’ N, => jf-
‘~ a» a» '

The risk or severity of
adverse effects increase

A
Abemaciclib .0 - - -«

I
\ Q ::> ’ @
Th
Dabrafenib 00 \ ’ e serum

-
concentration decrease

Figure 1: An example of DDI events. When drug
Abemaciclib and drug Dabrafenib interaction
together, an DDI event will be occurred and cause
the decrease of body’s serum concentration.
However, it will raise the risk or severity of
adverse effects when mixing drug Abemaciclib and
drug Itraconazole.

Key Contribution:

® A new multimodal deep neural network with a
two-pathway {framework including the drug
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Tengfei Lyu!, Jianliang Gao', Ling Tian!, Zhao Li% Peng Zhang? and Ji Zhang*

Problem Formulation

We formulate DDI events prediction as a multi-
class classification problem.

DDI Matrix: Y € (0, yij)Nded
where Ny denotes the number of drugs. ¥:j means

that the interaction event ¥;; exists between d; andd;.

Drug Knowledge Graph (DKG): a special type of

knowledge graph for named drug knowledge graph
(DKG), denoted byG = (D, R, T):

g = {(d,Tdt,t> d e D,ry ER,tET,DﬂT:@},

where D and T describe a subset of drug entities
and tail entities respectively, and R denotes the set
of relations.

Heterogeneous Feature (HF): It consist of the

target feature, substructure feature and enzyme
feature. It 1s expressed as follows:

= { X, Xs, X} € RVax(NetNatNe),

DDI Events Prediction: Given the DDI events

matrix, DKG and HF, we aim to predict specific
interaction events between drug d; and drug d; .Our
goal 1s to learn a prediction function:

@’LJ — F(d27 d]|@7 ya g) Xd)

where O denotes the model parameters.

Experiments & Results

MDNN Framework

DKG-based Pathway
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Figure 2: Illustration of the proposed MDNN, consisting of two core pathways: the DKG-based pathway
and the HF-based pathway. (1) The DKG-based pathway utilizes the graph neural network to extract the
topological structural information and semantic relations from the constructed drug knowledge graph
(DKG). (2) The HF-based pathway mines the inter-modality similarities of each heterogeneous feature from
multiple sources. (3) The multimodal fusion neural layer 1s applied to effectively assist the joint
representation learning of both the structural information and attribute feature, which explore the cross-
modality complementarity of the multimodal data.

knowledge graph pathway and the heterogeneous
feature pathway.

MDNN learns the representations from multimodal
data and mines the inter-modality similarities from
multiple sources.

MDNN exploits the topological structure
information and semantic relations with drug
knowledge graph.

® We conduct extensive experiments on a real-world

dataset to demonstrate the effectiveness of our
model compared with classic and the state-of-the-
art methods.
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