

MGNN: A Multimodal Graph Neural Network for Predicting the Survival of Cancer Patients

Jianliang Gao¹, Tengfei Lyu¹, Fan Xiong¹, Jianxin Wang¹, Weimao Ke², Zhao Li³

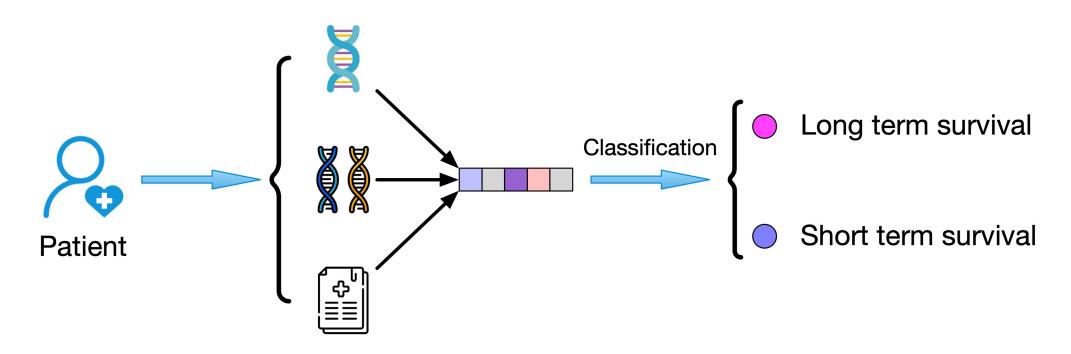
¹Central South University, ²Drexel University, ³Alibaba Group

Task: Predicting the Survival of Cancer Patients

Multimodal Medical Data

Copy Number Alteration (CNA)

Clinical Data

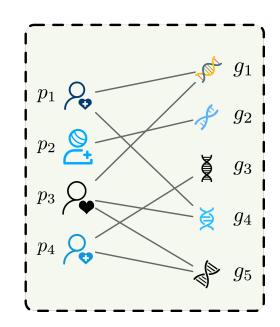


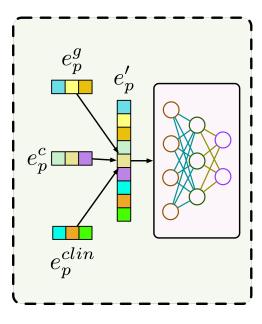
Motivation

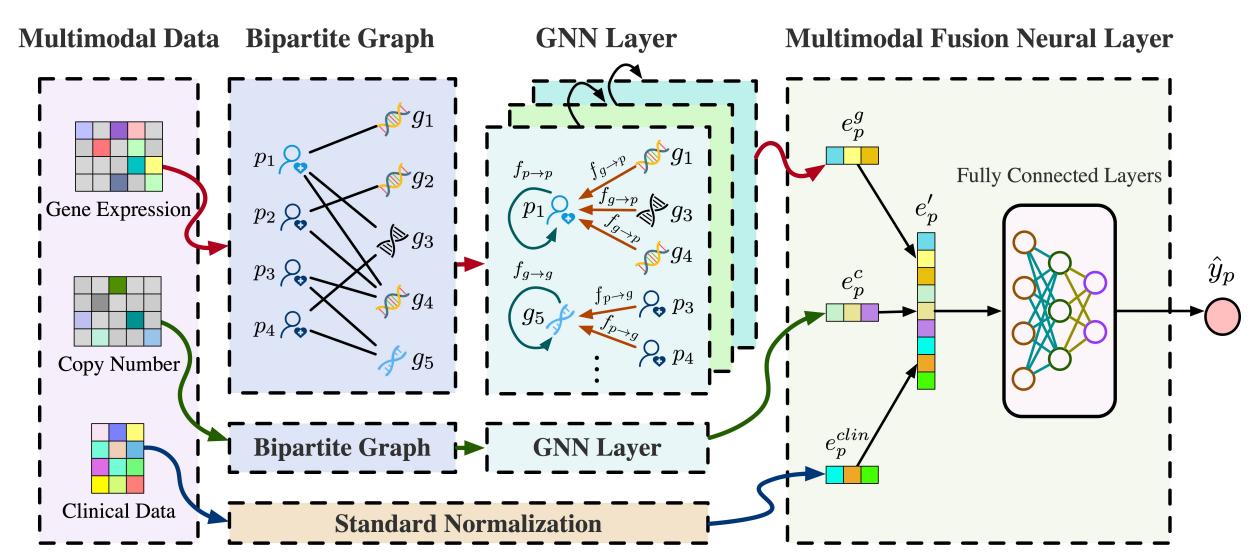
> Problems:

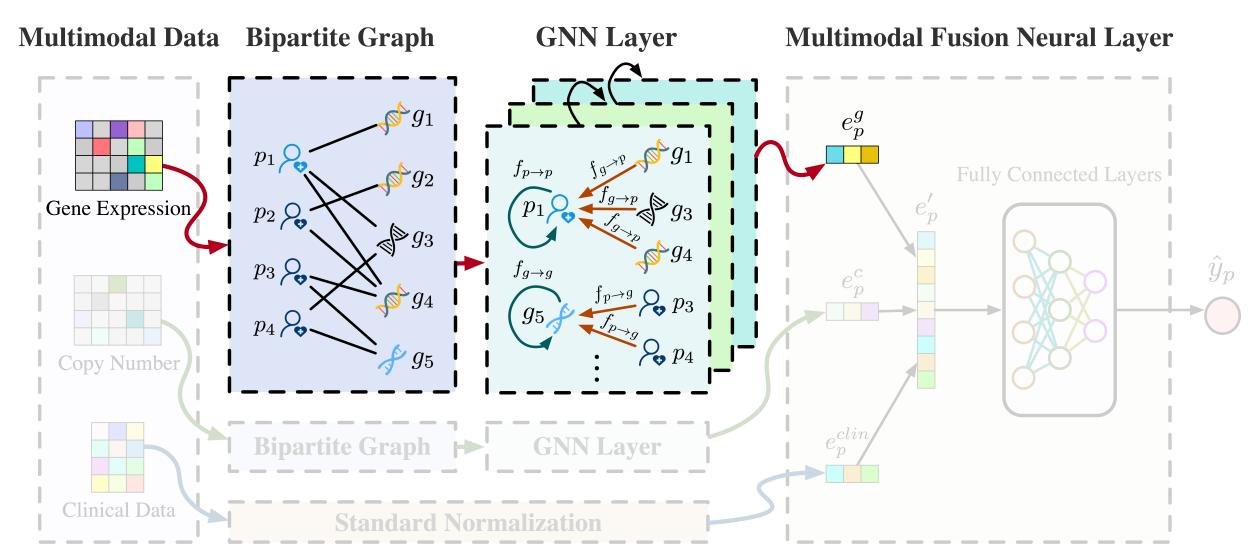
- Cancer prognosis prediction: critical, complex and urgent tasks
- The structure information between patients and multimodal medical data
- The features of medical data from different modalities

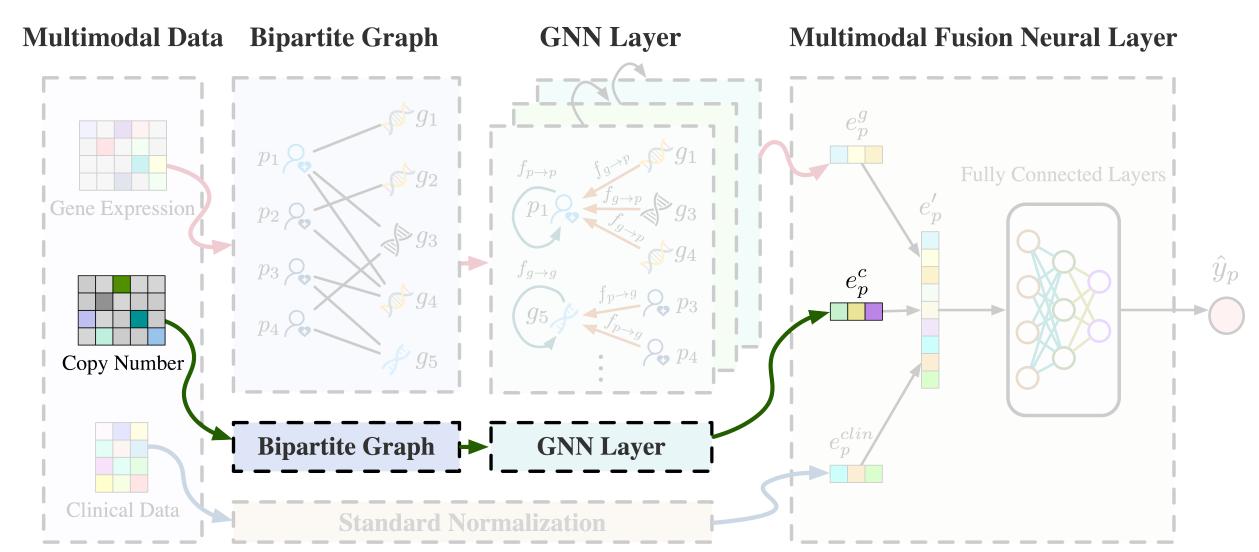
- > Solutions:
 - Building the graph
 - Multimodal fusion representation

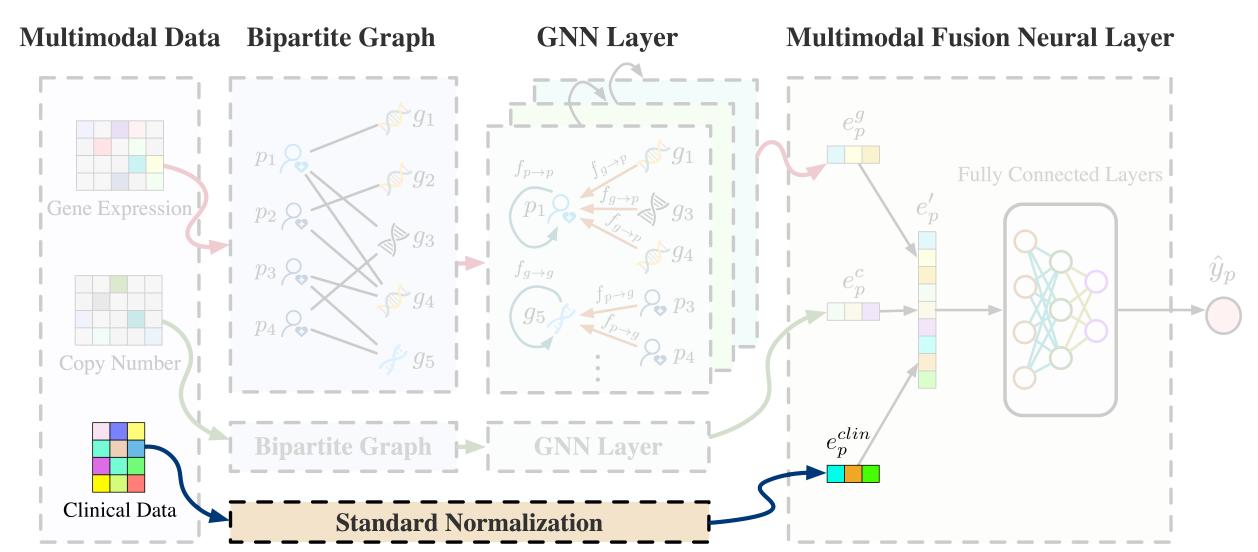


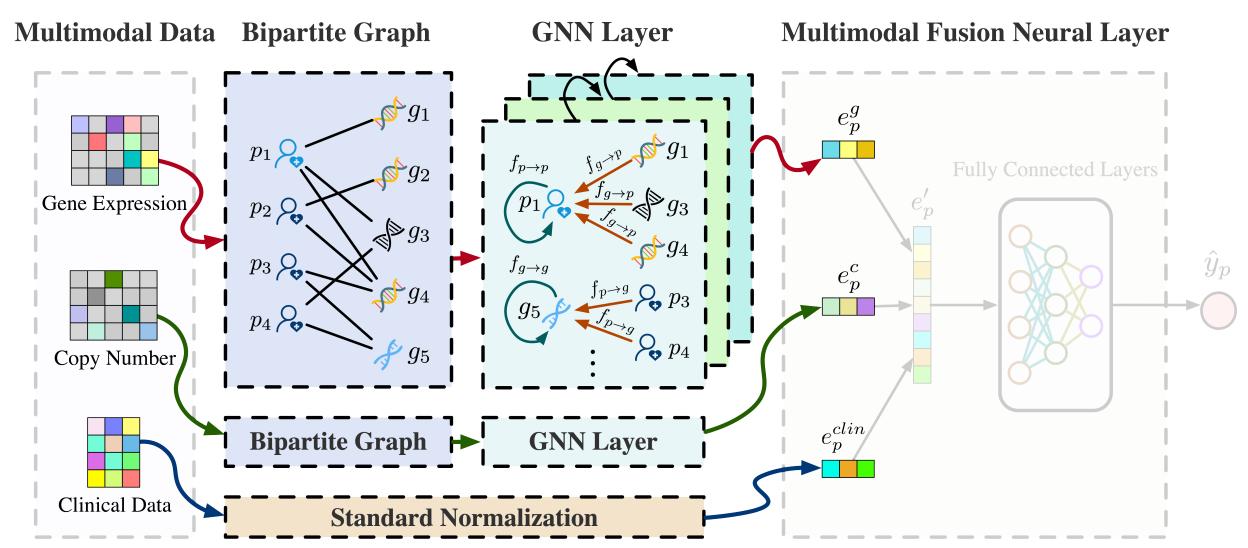


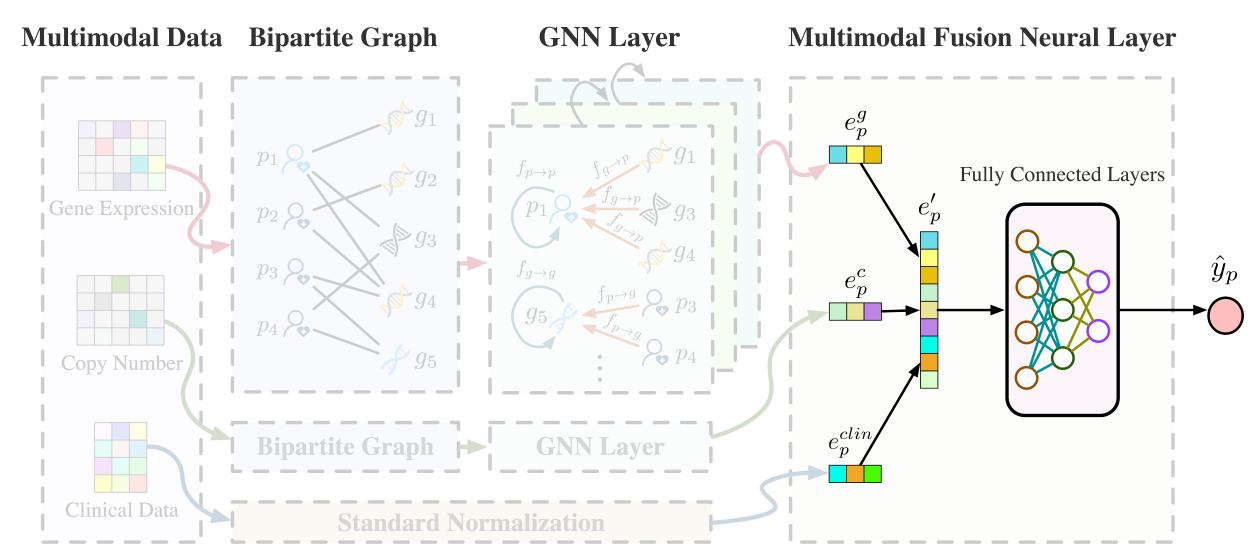


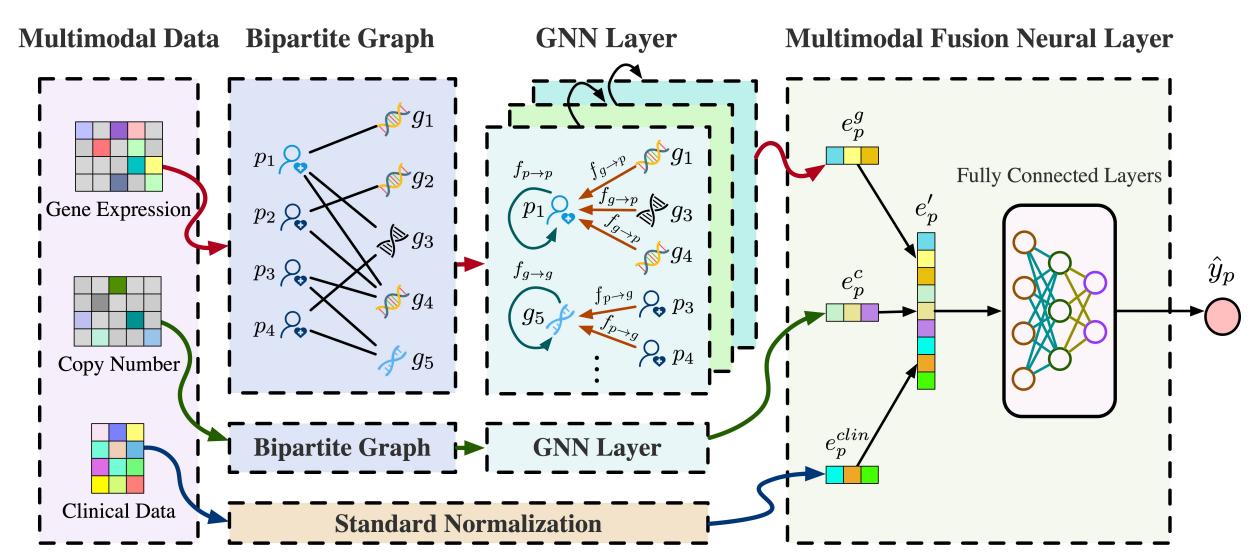




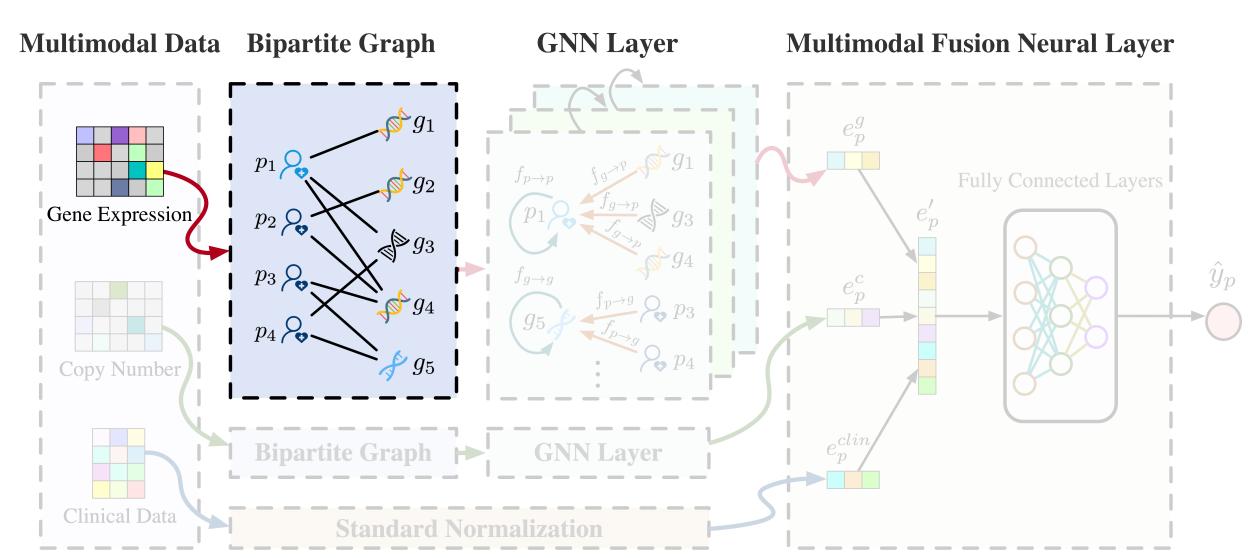




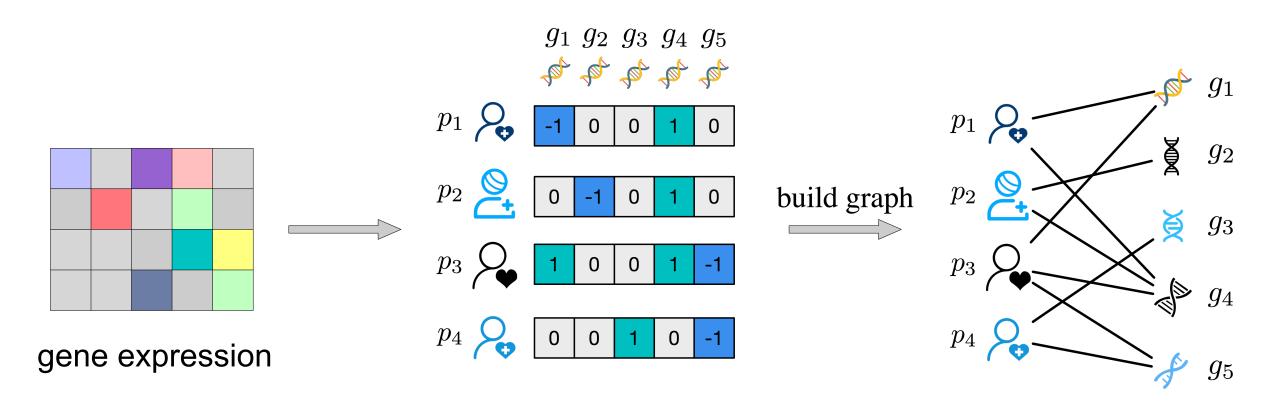




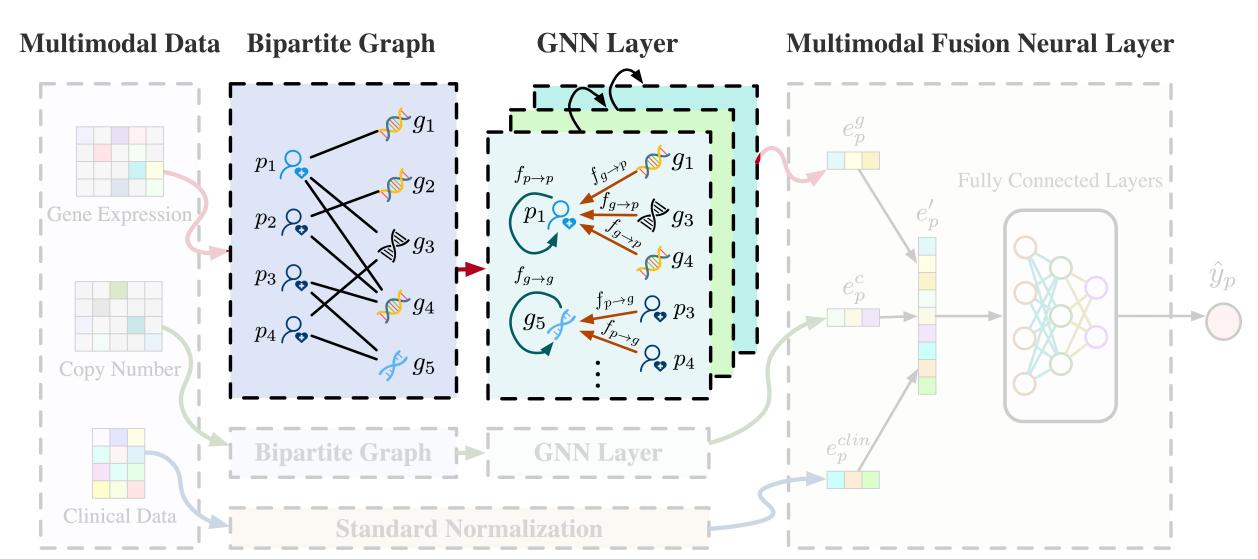
Step 1: Building the Bipartite Graph



Step 1: Building the Bipartite Graph

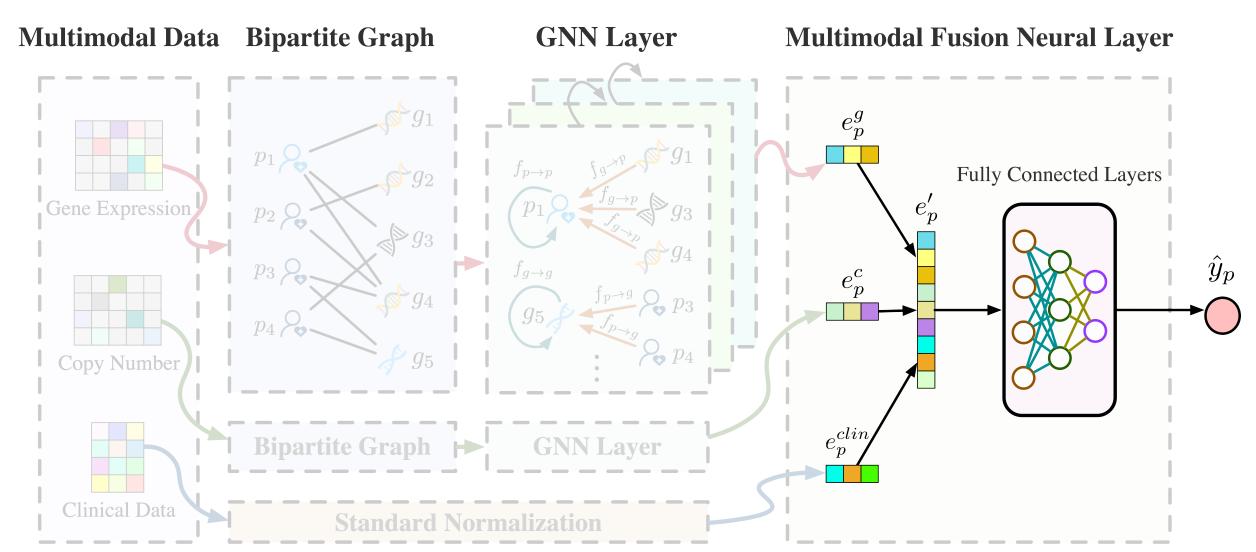


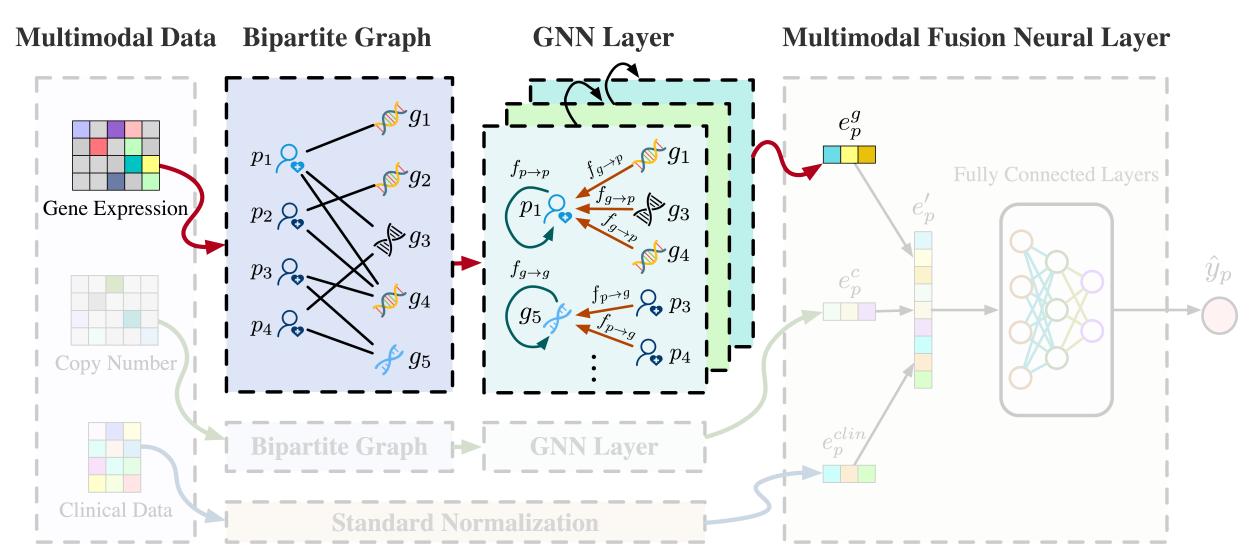
Step 2: Messages Propagation

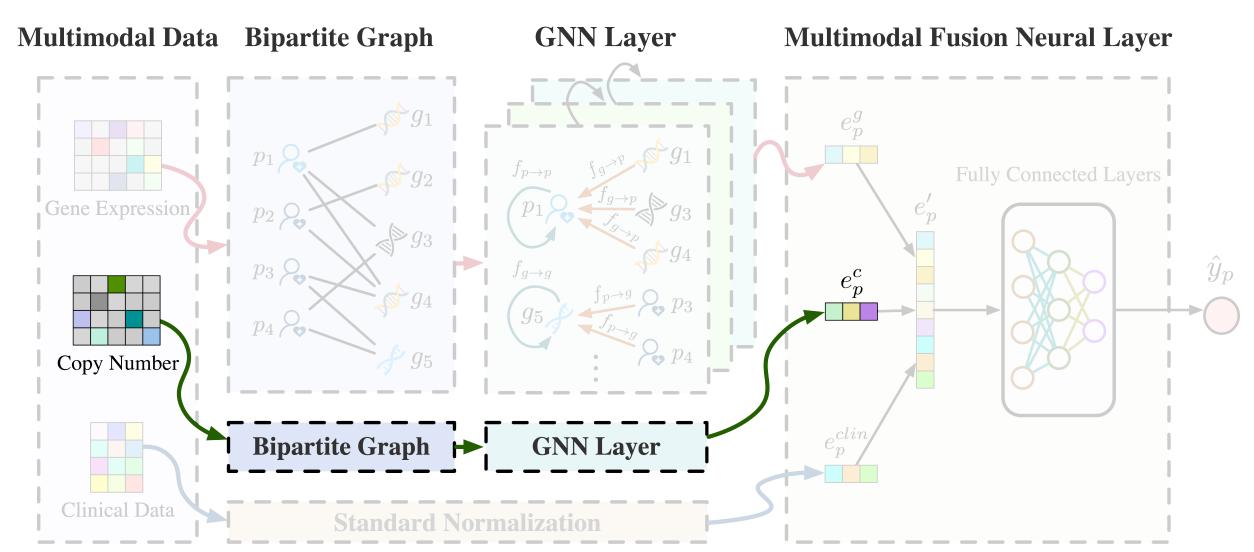


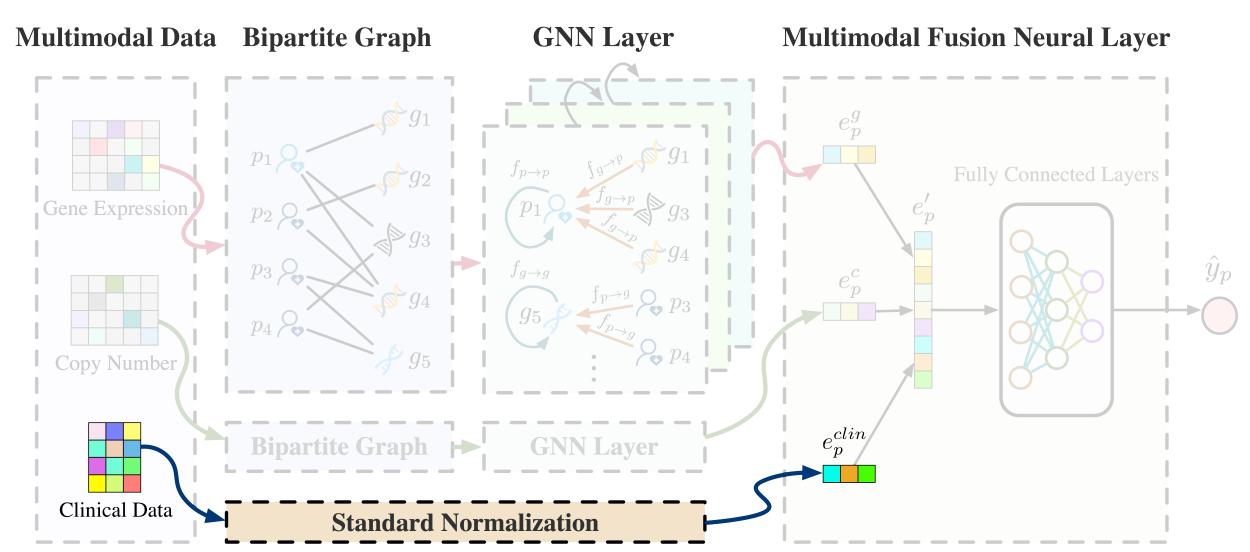
Step 2: Messages Propagation

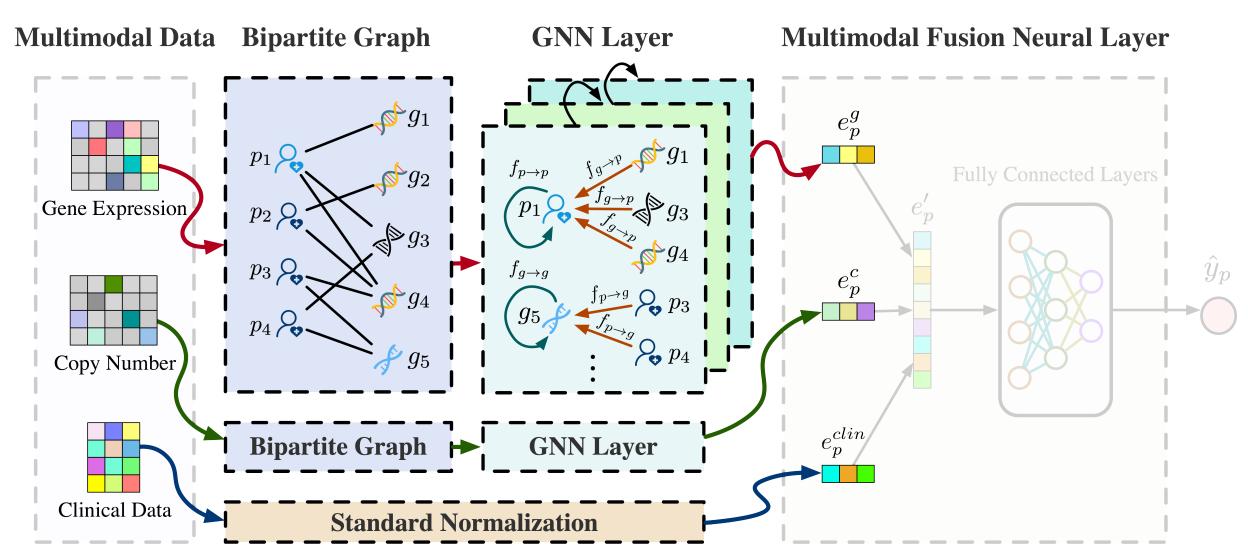
$$e_{p}^{(l+1)} = \sigma(f_{p \to p}(e_{p}^{(l)}) + \sum_{g \in \mathcal{N}_{p}} f_{g \to p}(e_{p}^{(l)}, e_{g}^{(l)})) \qquad \begin{cases} f_{p \to p}(e_{p}^{(l)}) = W_{1}^{(l)} e_{p}^{(l)} \\ f_{g \to p}(e_{p}^{(l)}, e_{g}^{(l)}) = (W_{1}^{(l)} e_{g}^{(l)} + W_{2}^{(l)} (e_{g}^{(l)} \odot e_{p}^{(l)})) \end{cases}$$

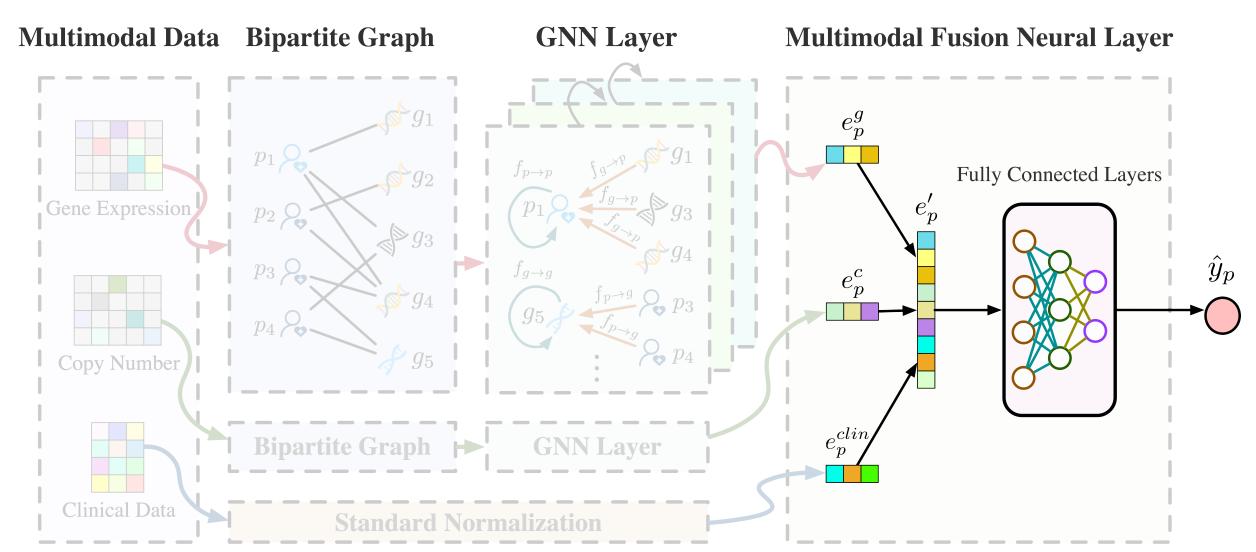












Experiments & Results

Performance Comparison

We compare our results with MDNNMD¹, SVM, RF and LR on breast cancer dataset².

Methods	Acc	Pre	Sn	Mcc	AUC
LR	0.760	0.549	0.183	0.209	0.663
RF	0.791	0.766	0.226	0.337	0.801
SVM	0.805	0.708	0.365	0.407	0.810
MDNNMD	0.826	0.749	0.450	0.486	0.845
MGNN	0.940	0.953	0.969	0.837	0.970

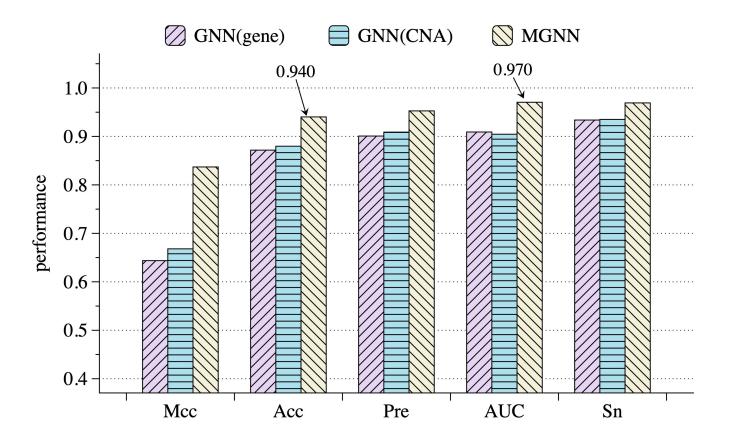
¹Dongdong Sun, et al. A multimodal deep neural network for human breast cancer prognosis prediction by integrating multi-dimensional data. TCBB, 16(3):841–850, 2018.

²Datasets are available at https://www.cbioportal.org/

Experiments & Results

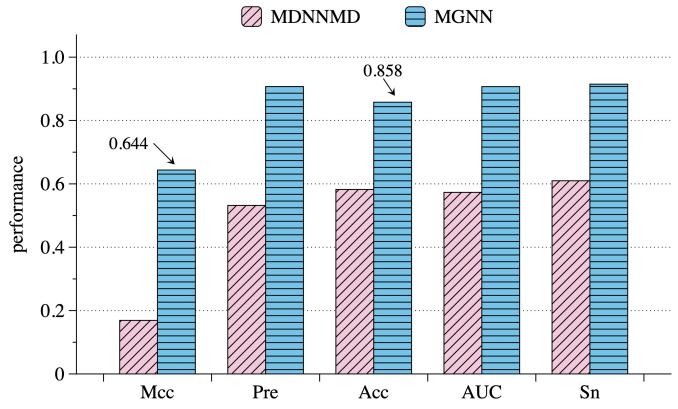
➤ Ablation Test

- MGNN: multimodal fusion representation
- GNN (gene) and GNN (CNA): single multimodality



Experiments & Results

- Robustness Verification
 - MGNN: multimodal fusion representation for lung cancer patients³
 - MDNNMD: Compared method



Summarization

highlight the critical importance of explicitly exploiting the multimodal data, and structure information between patients and multimodal medical data.

propose a unified framework for cancer survival prediction.

> Achieve state-of-the-art results on cancer survival prediction.

Thank You

